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Abstract

In a prior review, Perrruchet and Pacton (2006) noted that the literature on implicit learning

and the more recent studies on statistical learning focused on the same phenomena, namely the

domain-general learning mechanisms acting in incidental, unsupervised learning situations. How-

ever, they also noted that implicit learning and statistical learning research favored different inter-

pretations, focusing on the selection of chunks and the computation of transitional probabilities

aimed at discovering chunk boundaries, respectively. This paper examines the state of the debate

12 years later. The link between contrasting theories and their historical roots has disappeared, but

a number of studies were aimed at contrasting the predictions of these two approaches. Overall,

these studies strongly question the still prevalent account based on the statistical computation of

pairwise associations. Various chunk-based models provide much better predictions in a number

of experimental situations. However, these models rely on very different conceptual frameworks,

as illustrated by a comparison between Bayesian models of word segmentation, PARSER, and a

connectionist model (TRACX).
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1. Introduction

Perruchet and Pacton (2006) reviewed the arguments supporting the joint consideration

of two areas of research, the older area of implicit learning and the more recent approach

focusing on statistical learning. They noted that these two approaches were concerned by

basically similar leaning situations, hence justifying their common consideration under

the label of implicit statistical learning (ISL), as proposed by Conway and Christiansen

(2006). However, Perruchet and Pacton also noted that studies on implicit learning and

statistical learning favored different interpretations, focusing on chunk formation and sta-

tistical computations, respectively. Twelve years later, the historical coupling between

research fields and interpretations has virtually disappeared. For instance, Jimenez (2008)

and Jimenez, M�endez, Pasquali, Abrahamse, and Verwey (2011) suggest that learning in

Serial Reaction Times paradigms, one of the prototypical situations of implicit learning,

could not rely on chunks formation as initially believed, and, as will be described later,

various models of chunking have been developed primarily for word segmentation, a

widely used situation of statistical learning. However, the deep issue has received consid-

erable attention, and the present paper is aimed at reviewing the recent studies that have

moved the debate forward.

As in Perruchet and Pacton (2006), the main issue of concern will be the formation of

elementary cognitive units. Most studies explored the extraction of artificial words from a

continuous sequence of syllables, following the seminal studies of Saffran and coworkers

(e.g., Saffran, Newport, & Aslin, 1996). However, the notion of cognitive units is much

larger. For instance, a growing number of papers have investigated the formation of units

comprising a few words (e.g., Arnon, McCauley, & Christiansen, 2017; Christiansen &

Arnon, 2017), in keeping with the upsurge of “usage-based” models of language, which

assume that the starting point of language acquisition is the storing of short multi-word

utterances (see review in Tomasello, 2009). The formation of visual units from elemen-

tary shapes (e.g., Orb�an, Fiser, Aslin, & Lengyel, 2008), or still the creation of word-

referent pairings (e.g., Benitez, Yurovsky, & Smith, 2016) also illustrates the widespread

extension of the notion of cognitive units. Concurrently, the simplistic artificial material

initially exploited has been often replaced with more natural settings, such as child-direc-

ted language (e.g., Pelucchi, Hay, & Saffran, 2009a). Thus, the field extends its scope to

a wider range of issues than the segmentation of a continuous corpus into a few artificial

words. This scope could even spread to issues of grammatical categorization and syntax

acquisition, as discussed in the final section.

2. Statistical computations and chunk formation: The issue

No one denies the role of cognitive units in cognition. For instance, a word–object
association may only occur when the word, on the one hand, and the object, on the other

hand, are processed as units. It would make no sense to look for a link between, say, a
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given phoneme and a fragment of an object, because the association exists only at a

higher hierarchical level (but see Baayen, Milin, ��Dur�devi�c, Hendrix, & Marelli, 2011).

There is now clear evidence that ISL is one of the processes that lead to the formation of

exploitable units (e.g., Fernandes, Kolinsky, & Ventura, 2009; Graf Estes, Evans, Alibali,

& Saffran, 2007; Hay, Pelucchi, Estes, & Saffran, 2011; Kibbe & Feigenson, 2016).

Disagreements arise when the mode of formation of these units is considered. The first

and more common idea is that when the relevant units are not directly available in the

sensory input, prior statistical computations are required. As claimed by Adini, Bonneh,

Komm, Deutsch, and Israeli (2015): “Statistical learning and subsequence learning are

two successive stages in implicit sequence learning, with chunks inferred from prior sta-

tistical computations.” The computations mentioned in this context are in all cases mea-

sures of pairwise associations between elements of the input, and most often transitional

probabilities (TPs; i.e., given AB, the probability for A to be followed by B). The logic

is straightforward. In artificial or natural languages, for instance, TPs between syllables

composing a word are higher, on the mean, than TPs between successive syllables over-

lapping two words. As a consequence, dips in the distribution of TPs mark word bound-

aries. Note that the task of computing TPs is elegantly approximated by Simple

Recurrent Networks (SRNs, e.g., Mirman, Graf Estes, & Magnuson, 2010), which have

proven their relevance and efficiency in many other domains.

However, the relevant units can also be discovered from the same input using a very

different strategy. Because it turns out that even some experts in the field miss the point,

a small illustration is worthwhile. Let us consider a text printed without space, beginning

with “onceuponatime.” The sequence may be segmented as “on/ceu/ponat/ime,” “onceu/

po/nati/me,” “onc/eupo/natim/e,” the correct segmentation, “once/upon/a/time,” being one

among an overwhelming number of possibilities. The key point of the so-called chunk-

based models is to consider all or a subset of these possible segmentations, and to select

the one that meets better certain criteria. In particular, the units created in the correct seg-

mentation (once, upon. . .) are more likely to reoccur later in the text than the units cre-

ated as a consequence of erroneous segmentation (for instance, “ponat” may only reoccur

if the whole sequence “upon a time” happens again). As a consequence, selecting the par-

titioning of a corpus that requires the smallest number of different units (i.e., the shorter

lexicon) generally leads to discovering the words. Obviously, this is an oversimplified

sketch (a few other constraints are required), but it should suffice for giving an existence

proof for a method of segmenting a continuous corpus that requires no preliminary detec-

tion of probabilistic dips between units, and more generally, no computation of pairwise

statistics, whether unit-internal or unit-external. The sensory input is chunked from the

outset, and the correct units emerge through selection.

Before turning to an assessment of these two general classes of models, a terminologi-

cal clarification is wanted. Even within the cognitive science community (by contrast with

the computer science approach), the term of statistical learning is ambiguous. A large

proportion of introductory texts to the topic endorses the view initially proposed by Saf-

fran et al. (e.g., 1996), in which statistical learning is “the psychological process by

which the transitional probabilities from one syllable to another in the continuous speech
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streams could enable word segmentation” (Aslin & Newport, 2009). Endorsing this kind

of definition unfortunately enshrines the confusion between a set of empirical phenomena

and a specific interpretation. ‘‘Statistical learning’’ is used here as a theoretically neutral

label designating any form of exploitation of the statistical structure of the input. A par-

tially related problem is related to the concept of “statistical computations.” Again for

historical reasons, “statistical computation” is often identified with the computation of

pairwise associations, mostly TPs. Now, it is obvious that some chunk-based models

exploit statistical tools. The comparison below will oppose “TP-based” against “chunk-

based “views, with the convention that statistical computations may be involved in both

cases but for different objectives: identifying the frontiers between chunks as a probabilis-

tic gap (and the chunks in a second step), or directly searching for the correct chunks

among a set of candidates (a contrast sometimes framed in terms of bracketing vs. clus-
tering strategies, e.g., Swingley, 2005).

3. TP-based versus chunk-based approaches to ISL: The data

This section reviews the recent studies that were aimed at testing the relative validity

of the two approaches, or at least produced data potentially relevant for the debate. Most

important, TP knowledge turns out to be neither necessary nor sufficient for extracting

chunks.

3.1. TPs are not necessary

If chunks are inferred from the prior computations of pairwise correlations between

their components, pairwise correlations must be informative about the chunk structure to

allow chunk extraction. Orb�an et al. (2008, see also Fiser, 2009) were able to build visual

scenes in which pairwise correlations between shapes were of no help in establishing the

identity of chunks composed of three elements. Subjects showed a significant preference

for these chunks when they were compared to test triplets that shared the same correla-

tional structure, but were not displayed as chunks. Unsurprisingly, models computing con-

ditional or transitional probabilities between two elements of the scene, or all the

pairwise correlations, were unable to account for human performance.

The constraints for generating Orban et al.’s material, however, result in a very pecu-

liar structure, possibly endowed with confounded properties (notably because chunks must

have many components in common). Another strategy consists in using a standard

arrangement, in which pairwise relationships are indicative of chunk structure, and to

assess whether these relationships are actually learned whenever chunks are successfully

extracted. Giroux and Rey (2009) used an artificial language comprising both trisyllabic

words (e.g., ABC) and bisyllabic words (e.g., DE). Then subjects were exposed to a set

of two bisyllabic items, and they had to choose the one that seemed more likely to belong

to the language to which they had been exposed. For each test pair, one of the items was

a bisyllabic part word (e.g., CD) while the other item was either a bisyllabic word (DE)
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or a bisyllabic component of a trisyllabic word (e.g., AB). Note that AB and DE had the

same frequency and the same internal consistency (the between-syllable TPs were 1 in

each case). Unsurprisingly, an SRN predicted no difference between the two kinds of

pairs. This was indeed the result observed in a group exposed to the language during only

2 min. However, in another group trained during 10 min, performances were significantly

better when the test pairs involved bisyllabic words than a bisyllabic pair embedded in a

trisyllabic word. This pattern has been successfully simulated by several chunk-based

models (French, Addyman, & Mareschal, 2011; Giroux & Rey, 2009; Robinet, Lemaire,

& Gordon, 2011). Slone and Johnson (2018) recently provided successful replication in

8-month-olds, using visual shapes. Infants discriminated relevant pairs from pairs embed-

ded in triplets, but, echoing Giroux and Rey, only when they had sufficient exposures to

each pair and triplet (80 vs. 40 exposures), suggesting that the formation of larger units

impedes the representation of their components.

Fiser and Aslin (2005) and Glicksohn and Cohen (2011) reported that their subjects

learned three-element chunks without learning their embedded pairs. As Glicksohn and

Cohen pointed out, this finding suggests that “learning cannot be based on conditional

probability per se, because such computation should also discriminate embedded pairs

from random pairs” (p. 709). In a related vein, although not directly referring to the liter-

ature on statistical learning, several studies on sequence learning by Perlman and collabo-

rators (Perlman, Pothos, Edwards, & Tzelgov, 2010; Perlman, Hoffman, Tzelgov, Pothos,

& Edwards, 2016; see also Hoffman et al., 2017) lead to the same conclusion. One of the

questions raised in these studies is whether identical subsequences embedded into two

different, longer chunks are processed identically. For instance, if one of the long chunks

is more frequent than another, is the common part processed at the same speed, as it

could be expected if performance were guided by the computation of pairwise correla-

tions? The empirical response is clearly “no.” The general conclusion of this first subsec-

tion is that knowledge of the pairwise relations between elements composing a chunk are

not necessary for the creation and maintenance of chunk knowledge.

3.2. TPs are not sufficient

While the preceding section is concerned with the issue of necessity, other studies have

raised the question of sufficiency: Is the knowledge of the pairwise relations between

components sufficient to build a chunk? In Endress and Mehler (2009), subjects were

familiarized with a continuous language containing trisyllabic words that were generated

from (unheard) prototypes. If a prototype is designated as ABC, the heard words were

ABX, YBC, and AZC (with X, Y, and Z standing for invariant syllables). For instance,

participants heard tazepi, mizeRu, and tanoRu, which were all derived from the prototype

tazeRu. In this way, the (unheard) prototypes had exactly the same TPs between their

constituent syllables (i.e., AB, BC, and A_C) than the trisyllabic words composing the

language. If subjects have formed genuine chunks, that is, some acoustical word candi-

dates that could be later associated as a whole to a meaning, they should select words

over the prototypes when both are played in a subsequent forced-choice test. However, if
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they only learned pairwise relations, they should be unable to distinguish between the

actual words and their prototypes. Endress and Mehler reported that participants failed to

distinguish between words and prototypes, hence suggesting that statistical learning gen-

erates knowledge about TPs within each pair of syllables, which are common to words

and their prototypes.

Null results, however, provide only weak evidence. Perruchet and Poulin-Charronnat

(2012a) exploited the Endress and Mehler (2009) procedure, and they get very different

results. Participants showed a significant preference for words over prototypes after only

5 min of exposure to the language. Overall, the effect appears remarkably stable, with the

rate of correct responses on eight independent groups ranging from 59.52% to 66.25% (with

chance set to 50%). Slone and Johnson (2015) exploited the very same paradigm, but

replaced the auditory syllables with colored shapes. As in Perruchet and Poulin-Charronnat,

adult participants chose the chunks as more familiar than their statistically matched proto-

types significantly more often than chance. Slone and Johnson (2018) used a similar proce-

dure, but introduced several simplifications to make the task manageable by 8-month-old

children. There was only one prototype and three chunks, and the non-adjacent pair of the

prototype (A_C) was no longer present in the chunks. Nevertheless, pairwise relationships

between adjacent shapes (AB and BC) were still matched between the chunks and their pro-

totype. Confirming results in adults, infants looked significantly longer during chunk test tri-

als, compared to the prototype test trials. To quote the authors (p. 96), “In contrast to the

predictions of statistical models, infants did not appear to represent the familiarization

sequence primarily in terms of TPs between adjacent items. [. . .] Infants represented the

familiarization sequence in terms of extracted units, not statistical relations.”

To summarize the two prior points, a chunk may be built without knowledge of the

pairwise relationships between its components, and knowing these relationships is not suf-

ficient to build a chunk. Other data also run against the idea that chunks emerges from

the prior computation of statistical co-occurrences, although more indirectly.

3.3. Backward TPs

When proposing the computation of TPs as the basic mechanism underlying word seg-

mentation, Saffran et al. (1996) and Aslin, Saffran, and Newport (1998) referred in fact

to forward TPs, which designate how A predicts B in a sequence AB. Now, without

specific constraints, a word comprises bidirectional relationships between its constituents

(i.e., A predicts B, and B predicts A), and this is true for artificial languages as well as

for natural languages (e.g., Swingley, 1999).1 The focus on forward TPs is consistent with

the enduring propensity of many researchers, especially neuroscientists and philosophers

(e.g., Clark, 2013), to consider that the mind is specifically engineered to predict future

events. However, as noted by Jones and Pashler (2007), “there is a remarkable absence of

behavioral tests of this idea.” Perruchet and Desaulty (2008) examined the role of forward

and backward TPs in word segmentation from artificial languages in which words were

based only on forward TPs or backward TPs. They showed that adult subjects were as

good at discovering the two kinds of words. This result was replicated in infants with
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auditory stimuli (French et al., 2011; Hay et al., 2011; Pelucchi, Hay, & Saffran, 2009b)

and visual stimuli (Tummeltshammer, Amso, French, & Kirkham, 2017).

Certainly, these data may be encompassed in introducing some modifications into the

standard TP-based view. Backward TPs may be used instead of forward TPs (e.g.,

McCauley & Christiansen, 2014). More generally, the detection of probabilistic dips may

rely on the computation of correlation coefficients or Mutual Information, which give

equal weight to forward and backward relationships. However, these changes appear to

add ad hoc complexity to the initial model, which, as a consequence, loses the support

provided by the achievement of an SRN in simulating the postulated processes. Indeed,

given that the backpropagation algorithm exploits the error between the predicted and the

actual next event in a sequence, an SRN, as a matter of principle, is unable to learn back-

ward TPs or any statistics, including backward-directed information.

By contrast with a TPs-based approach, taking into account both forward and back-

ward relationships is a natural by-product of a chunking process. It is inherent to the nat-

ure of a chunk that all its components are mutually linked, without a privileged direction

(obviously, this does not mean that the order of its components is irrelevant: “baby” is

not “byba”). As will be seen in the next sections, all chunk-based models are sensitive to

both forward and backward relationships between chunk components without introducing

any ad-hoc machinery (rather, the limitation of these models to an exclusive sensitivity to

forward relationships would need ad-hoc algorithmic modifications).

3.4. Zipfian distribution and other variables

Several recent studies have manipulated variables generating different, and generally

opposite, predictions from TPs-based and chunk-based models of ISL. Let us consider a

representative example (Kurumada, Meylan, & Frank, 2013). By contrast with most artifi-

cial languages where words have a uniform frequency distribution, words in natural lan-

guages have a frequency distribution that approximately follows the Zipf’s law (e.g.,

Piantadosi, 2014). There are few very high–frequency words, and many low–frequency

words. The consequences for a model postulating that word boundaries are identified by

the presence of low TPs (e.g., Saffran et al., 1996) are straightforward. Such a model

works well with artificial languages because with the standard uniform frequency distribu-

tion, virtually all between-word TPs are lower than within-word TPs. However, this is no

longer true with a skewed distribution. Indeed, the within-word TPs for low-frequency

words can be lower than the between-word TPs for high-frequency words, hence both

leading to introduce extra boundaries into low–frequency words, and to pool together

high–frequency words. As a consequence, subjects’ segmentation should be better with a

uniform than a zipfian distribution. A chunk-based model makes the opposite prediction.

Such a model should predict better performance with a skewed distribution than with a

uniform distribution, notably because high–frequency words should be easily discovered,

providing information about the beginning and the end of the surrounding words (this is

because successive chunks are generally assumed to be disjunctive: they do not overlap).

As a consequence, the whole process of segmentation should be speeded up.
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Kurumada et al. (2013) reported simulations confirming that a TP-based model (Saf-

fran et al., 1996) segmented a uniform language better than a Zipfian language, while dif-

ferent chunking models segmented a Zipfian language better than a uniform language.

Crucially, they also collected experimental data, and it turned out that adult learners

performed better with a Zipfian language, as do the chunking models (see also Frost,

Monaghan, & Christiansen, 2016).

Similar studies involving other variables have been published, all of them using artifi-

cial languages. A non-exhaustive list includes:

1. The number of different words (Frank, Goldwater, Griffiths, & Tenenbaum, 2010).

2. The effect of the amount of exposure and the time course of performance. Some

units are quickly discovered (Trueswell, Medina, Hafri, & Gleitman, 2013), but very

difficult to change if statistical regularities are subsequently altered (Zellin, von

M€uhlenen, M€uller, & Conci, 2014).

3. The length of the sentences. Introducing pauses in the speech stream as in natural

language has a very beneficial effect on segmentation (Johnson & Tyler, 2010;

Sohail & Johnson, 2016).

4. The effect of the prior exposure to a language involving the same syllables. Prior

exposure to a language in which words are subsequently located at word transition

has a detrimental effect (Franco & Destrebecqz, 2012; Perruchet, Poulin-Charronnat,

Tillmann, & Peereman, 2014; Poulin-Charronnat, Perruchet, Tillmann, & Peereman,

2017; see also Mersad & Nazzi, 2012).

5. The beneficial effect of finding the first words for the discovery of the other ones

(e.g., Perruchet & Tillmann, 2010).

Space is lacking for analyzing why TP-based and chunk-based models predict different

outcomes in each case, but overall, studies involving model comparisons have shown that

TP-based models (and more generally models relying on statistical co-occurrences) fail to

simulate human data (predictions are often in the opposite direction), while various

chunking models are successful (Frank et al., 2010; Kurumada et al., 2013; Meylan,

Kurumada, B€orschinger, Johnson, & Frank,2012; Perruchet & Tillmann, 2010; Poulin-

Charronnat et al., 2017).

When the four points above are considered jointly, it may hardly be denied that the

weight of evidence supports chunk-based models against TP-based models. This is a

rather startling conclusion, given that a TP-based interpretation was initially put forward

as the only possible account for the extraction of words from a continuous artificial lan-

guage (e.g., Saffran et al., 1996) and, maybe due to this historical prominence, is often

still identified with the notion of statistical learning.

4. Models of chunking

Up to now, chunk-based models have been taken as a whole, which makes sense

because they share a same general strategy, outlined above. However, they differ
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substantially. The objective of this section is to give insight into the plurality of mecha-

nisms that may account for chunking without involving the prior computation of pairwise

statistics. As in Kurumada et al. (2013), three models or classes of models will be consid-

ered: the probabilistic or Bayesian models, PARSER (Perruchet & Vinter, 1998), and

TRACX (French et al., 2011). Among other major models, the CBL (Chunk-Based

Learning; e.g., McCauley & Christiansen, 2014) will be not considered, because despite

its name, it is in fact a hybrid model: The initial formation of chunks relies on computa-

tions aimed at locating boundaries in the dips of the TP distribution (as earlier TP-based

models, except that the CBL model exploits backward TPs instead of forward TPs).

Let us start from the observation above that selecting among all the possible partition-

ing of a linguistic corpus, the one fulfilling certain criteria results in identifying the

words. We suggested as a first approximation that a relevant criterion could be the parti-

tioning that requires the smallest number of different units. However, using this criterion

alone would generally lead to the primitives (e.g., the letters in our example above, or

the phonemes, the syllables, etc.), resulting in chunking failure. It has been often posited

that what needs to be minimized is the sum of the codelength for the chunks (the lexi-

con), and the codelength for the input data when written using the lexicon. A statistical

tool for assessing the best coding is the Minimum Description length (MDL) method.

One of the first models of segmentation was based on the MDL criterion (Brent & Cart-

wright, 1996). The problem of the optimal segmentation may be formulated in a Bayesian

framework. Starting from an hypothesis space that consists of all possible segmentation

of the data, the Bayesian model of Goldwater, Griffiths, and Johnson (2009) is aimed at

finding the segmentation with the highest probability, a higher probability being assigned

to segmentations that contain relatively few word types, with each of which occurring fre-

quently and comprising only a few primitives.

These models could not serve as plausible psychological models, let alone because the

whole corpus needs to be stored and processed before extracting a single word. However,

the MDL principles have been exploited in more realistic models in which learners pass

through the data sequentially, without storing the sentences in memory. In the MDL-

Chunker of Robinet et al. (2011), for instance, a new chunk is created on-line whenever

the overall representation of the data when this chunk is used as a coding unit becomes

simpler than before chunk creation. Likewise, the Bayesian Goldwater et al.’s model has

been modified to process utterances one at a time (e.g., Frank et al., 2010; Meylan et al.,

2012; Pearl, Goldwater, & Steyvers, 2011). Along the same lines, these studies have

addressed the question of how learners may approximate Bayesian inference by using

algorithms implementing known limitations of the cognitive apparatus. For instance, in

one of the algorithms explored by Pearl et al. (2011), greater prominence is given to the

data encountered more recently, in order to simulate the human memory decay process.

In most studies, implementing processing and memory limitations did not substantially

impair the performance of a model simulating an ideal learner.

By contrast, the primary motivation of PARSER (Perruchet & Vinter, 1998) is to

account for optimal segmentation in terms of simple and ubiquitous psychological pro-

cesses. Starting from the observation that, in humans, attentional coding naturally
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segments the ingoing information into small and disjunctive parts of variable length, the

model encodes the input as a succession of provisional units comprising a random num-

ber of components (typically, between 1 and 3). These units are stored in a lexicon and

their future depends on ubiquitous laws of memory: They are strengthened whenever they

reoccur in the input, and otherwise, their strength vanishes as a consequence of sponta-

neous decay and/or interference with the processing of similar material. The selection of

the units that are relevant to the structure of the language among all the (irrelevant)

others operates as a natural consequence of memory laws. Decay eliminates the units that

do not occur often enough, while interference makes the model sensitive to statistics such

as bi-directional transitional probabilities between the unit components (see Perruchet &

Poulin-Charronnat, 2012b, for a justification). Because perception is guided by internal

representations, the learned chunks become new primitives, making the system able to

build chunks whose components were not initially perceived in a single attentional focus.

Finally, TRACX (French et al., 2011) exploits a connectionist architecture which basi-

cally works as an autoassociator network, with one hidden layer comprising half of the

units of the input and output layers. The to-be-learned sequence is displayed as successive

pairs of elements, as in a moving window. As a consequence of learning through a back-

propagation algorithm, the output error (i.e., the difference between input and output)

becomes smaller whenever the same pair of elements reoccurs. If this error is below a

preset threshold value, this is taken as evidence that the network “recognized” the pair as

having previously occurred. In this case, the weights of the hidden unit are copied in the

input layer on the next processing step. The end result is that by iterative accretion,

TRACX learn to form chunks of a variable number of elements that are “recognized” as

co-occurring. Mareschal and French (2017) present a version, TRACX 2, in which

“recognition” is not an all-or-none process: The contribution of the hidden layer to the

input is graded as a function of the output error.

Certainly one of the most surprising outcome of studies comparing different chunk-

based models, and especially the Bayesian models to either PARSER or TRACX, is that

overall, they turn out to make very similar predictions (Frank et al., 2011; Kurumada

et al., 2013; Meylan et al., 2012; Robinet et al., 2011). This may be not as surprising as

one might think, however. For instance, as mentioned above, the Bayesian models

exhaustively examine all possible partitionings of a corpus or a given utterance, while

PARSER relies on the variety generated by successive random drawings to provide provi-

sional chunks. PARSER’s algorithm certainly does not explore the entire hypothesis

space, but approximates this objective. In both models, the segmentation problem is

solved by some direct competition between different possible chunks, instead of being an

inference on a continuous distribution of probabilities over syllables as in TP-based mod-

els. Moreover, ending up with the same chunks after selection is not unexpected. Indeed,

for a given corpus and other things being equal, minimizing the number of different

words (the primary target of Bayesian models) also maximizes the number of repetitions

and the cohesiveness of each word. PARSER and TRACX exploit this logical corollary.

This analysis suggests that the differences between models could be more related to

the choice of technical options than to their theoretical underpinnings. Several
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contributors to Bayesian literature (e.g., Goldwater et al., 2009; Pearl & Goldwater, 2016;

Qian, Jaeger, & Aslin, 2016), referring to Marr (1982)’s framework, have emphasized

that Bayesian models provide a computational-level account for learners’ behavior, while
most other models, either symbolic or connectionist, would be aimed at simulating the

same behavior at the algorithmic level. Marr’s framework provides an attractive solution

to the heterogeneity of models. PARSER could be thought of as an algorithmic imple-

mentation of some Bayesian principles, and likewise, at a more fine-grained level,

TRACX could be thought of as an algorithmic implementation of PARSER on some

aspects. For instance, in PARSER, interference is assessed as the decrement of a numeri-

cal value that is assumed to measure the memory strength of a stored lexical unit. Decre-

ment is proportional to the number of primitives shared with the currently process unit.

Much more realistically, in TRACX, interference is a function of a similarity gradient

consecutive to distributed representations.

Although the reference to Marr (1982)’s level of analysis certainly accounts for a part

of the differences between chunk-based models of segmentation, whether this reference

exhausts the issue is questionable, however. Let us consider another difference between

Bayesian approaches and PARSER for illustration. Bayesian models examine what an

ideal learner can learn from a given corpus, then they introduce what they construe as

attentional and memory limitations, in order to process information in a more cognitively

plausible way. By contrast, those alleged limitations are what allows PARSER to work.

Assuming that the human mind would be endowed with boundless abilities would lead to

behavior improvement in a Bayesian framework (at least theoretically), whereas this

would make PARSER unable to learn anything. For instance, decay and interference are

the processes that lead the learner to be sensitive to frequency and contingency and as a

way of consequence, to discover the words. It appears quite difficult to account for so

deep differences as a simple shift from a computational level to an algorithmic level. In

fact, in the conceptual framework behind PARSER and TRACX, the very notion of ideal
learner, essential for Bayesian models, makes no sense, because an optimal learning strat-

egy may be defined only in regards of the actual learner’s abilities.

5. Discussion and research agenda

Converging empirical data suggest that forming chunks when chunk boundaries are not

given in the input does not proceed by computing the pairwise statistics allowing the dis-

covery of those boundaries, as initially claimed in the word segmentation literature (e.g.,

Aslin & Newport, 2009; Saffran et al., 1996). Instead, most studies are consistent with

the idea that a particular segmentation is selected among a number of other possibilities

in a way that differs as a function of models, but in all cases relies on the intrinsic prop-

erties of the chunks.

As outlined in the Introduction, the notion of chunk is broader than that of word. Nev-

ertheless, the explanatory power of chunking may be perceived as restricted to elementary

matters. Regarding language, chunking processes seemingly leave aside lexical
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categorization and syntax. More generally, chunks appear to be far from exhausting all

the distributional regularities in the world, and therefore they appear as only one among

the multiple targets of statistical learning and may be the simplest one. This statement

has the potential of challenging the conclusion above, because a class of processes that

would be able to account for both chunking and the learning of higher structures appears

to be more parsimonious than postulating different processes for each subdomain. Beyond

the parsimony argument, the fact that individual differences in chunk extraction are pre-

dictive of children’s comprehension of syntactic structures (e.g., Kidd & Arciuli, 2016)

also prompts us to consider that lexical formation and syntax acquisition could rely, at

least partially, on the same processes. Considering the models of chunking through this

lens, connectionist and Bayesian approaches appear more promising than Parser. Connec-

tionist models have been used in the service of syntax acquisition (e.g., Reali, Chris-

tiansen, & Monaghan, 2003; Williams, 2010) and, likewise, Bayesian modeling has been

applied to discover abstract syntactic structures (e.g., Perfors, Tenenbaum, & Regier,

2011). By contrast, Parser, as parsimonious it may be for extracting chunks, is seemingly

unable to go beyond this primary objective.

This view is not the only option, however. Instead of favoring models of chunk extrac-

tion that are ready-made for more complex processing, the objective of overall parsimony

may be fulfilled in following the other way round, namely in extending the explanatory

power of chunking processes beyond their conventional frontiers. Regarding language, for

instance, a model of chunking coding the frequency of words does more than building a

lexicon, because highly frequent words are helpful for the formation of grammatical cate-

gories (e.g., Frost et al., 2016). This alternative approach becomes still more persuasive

whenever the conventional definition of chunks is broadened. To illustrate, let us consider

the notion of frequent frames, as introduced by Mintz (2003). In this context, a frame is

an ordered pair of words with any word intervening. Frequent frames form the basis of

an early categorization strategy, because it has been shown that in many languages (for

French, see Chemla, Mintz, Bernal, & Christophe, 2009), a given frame tends to surround

words from a particular syntactic category. Admittedly, Parser is unable to account for

the extraction of frequent frames, because it is devised to extract blocks of consecutive
elements. However, this is only a superficial handicap: In both Parser and the frequent

frames framework, the relevant elements, whether consecutive or not, are linked due to

their joint attentional processing, and the selection of the most frequent units is due to

the limited processing resources of the learner. What is illustrated through this example is

that the principles underlying Parser can be extended to syntactical issues, provided that

chunks comprising non-adjacent components are allowed. Another, still more crucial

extension to the conventional notion of chunks would be the use of abstract components.

Hamrick (2014) shows that when both an SRN and PARSER receive abstract categories

as input, PARSER better captures the learning of syntactic sequences of a semi-artificial

language than the SRN. Going a step further in the extension of chunks to complex cog-

nitive units, Perruchet and Vinter (2002) proposed a general model of learning and devel-

opment consisting in the progressive shaping of such units, which relies on the

generalization of the processes involved in PARSER.
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An objective for further research could be to assess the validity of thinking about the

chunks as the simplest type of very general representational units, potentially able to cap-

ture an essential part of cognitive functioning. Another objective immediately follows,

because it is obvious that large and composite units would need to be subsequently bro-

ken down on some occasions. In fact, this is also true for the conventional chunks. The

multiword blocks need to be decomposed into words, words need to be analyzed into

components in order to learn to read and write, and so on. Now, this process of disassem-

bly is currently neglected. It should be noted that, although chunk formation is usually

thought of as an implicit, non-intentional, and unsupervised process, the need for decom-

position generally occurs in the context of explicit, often academic learning. Studying

together chunk construction and chunk deconstruction appears as especially promising,

and it should provide a gateway to a more general issue that has been inexplicably

neglected from the early studies on implicit learning, namely the interactions between

implicit and explicit forms of learning (see Batterink, Reber, & Paller, this issue).

Note

1. Note that Aslin et al. (1998, note 3) acknowledged that backward TPs provided

information about word boundaries in their languages.
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